Evolutionary Learning in Identification of Fuzzy Models: Application to Damadics Benchmark

نویسندگان

  • Arunas LIPNICKAS
  • Józef KORBICZ
چکیده

Evolutionary learning and especially genetic optimisation algorithms have recently received a lot of research attention as tools for identifying fuzzy models of the systems. Most often fuzzy modelling employ the fuzzy IF–THEN rules. In this paper, besides AND–operator the OR–operator is also considered in constructing the premise rule base. A genetic algorithm is utilised to find the premise structure of the rules, also to optimise fuzzy set membership functions and the consequent model structure of the rules at the same time. The performance of the approach is demonstrated on the DAMADICS benchmark problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VisualBlock-FIR for Fault Detection and Identification: Application to the DAMADICS Benchmark Problem

This paper describes a fault diagnosis system (FDS) for non-linear plants based on fuzzy logic. The proposed scheme, named VisualBlock-FIR, runs under the Simulink framework and enables early fault detection and identification. During fault detection, the FDS should recognize that the plant behavior is abnormal, and therefore, that the plant is not working properly. During fault identification,...

متن کامل

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

Improving Fault Isolability Properties by Structural Analysis of Faulty Behavior Models: Application to the Damadics Benchmark Problem

Structural analysis is a powerful tool for early determination of detectability/isolability possibilities. It is shown how different levels of knowledge about faults can be incorporated in a structural fault-isolability analysis and how they result in different isolability properties. The results are evaluated on the DAMADICS valve benchmark model. It is also shown how to determine which faults...

متن کامل

Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation

Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...

متن کامل

On fault detection under soft computing model uncertainty

The paper deals with the problems of robust fault detection using soft computing techniques, in particular neural networks (Group Method of Data Handling, GMDH), multi-layer perceptron), and neuro-fuzzy networks (Takagi-Sugeno model). The model based approach to Fault Detection and Isolation (FDI) is considered. The main objective is to show how to employ the bounded-error approach to determine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003